14. Respiration in Plants 





Chapter 1 – The Living World 

Chapter 2 – Biological Classification 

Chapter 3 – Plant Kingdom 

Chapter 4 – Animal Kingdom 


Chapter 5 – Morphology of Flowering Plants 

Chapter 6 – Anatomy of Flowering Plants 

Chapter 7 – Structural Organisation in Animals 



Chapter 8 – Cell: The Unit of Life 

Chapter 9 – Bio-Molecules 

Chapter 10 – Cell Cycle and Cell Division 


Chapter 11 – Transport in Plants 

Chapter 12 – Mineral Nutrition 

Chapter 13 – Photosynthesis in higher plants 

Chapter 14 – Respiration in Plants 

Chapter 15 – Plant Growth and Development 


Chapter 16 – Digestion And Absorption 

Chapter 17 – Breathing and Exchange of Gases 

Chapter 18 – Body fluids and circulation 

Chapter 19 – Excretory Products and their Elimination 

Chapter 20 – Locomotion and Movement 

Chapter 21 – Neural Control and Coordination 

Chapter 22 – Chemical Coordination and Integration 


Unit-VI Reproduction

Chapter 1 : Reproduction in Organisms 

Chapter 2 : Sexual Reproduction in Flowering Plants 

Chapter 3 : Human Reproduction 

Chapter 4 : Reproductive Health 

Unit-VII Genetics and Evolution

Chapter 5 : Principles of Inheritance and Variation 

Chapter 6 : Molecular Basis of Inheritance 

Chapter 7 : Evolution 

Unit-VIII Biology and Human Welfare

Chapter 8 : Human Health and Disease 

Chapter 9 : Strategies for Enhancement in Food Production 

Chapter 10 : Microbes in Human Welfare 

Unit-IX Biotechnology  

Chapter 11 : Biotechnology Principles and Processes 

Chapter 12 : Biotechnology and its Applications 

Unit-X Ecology and Environment 

Chapter 13 : Organisms and Populations 

Chapter 14 : Ecosystem 

Chapter 15 : Biodiversity and Conservation 

Chapter 16 : Environmental Issues 

​Plant Respiration

Exchange of Gases in Plants:

  1. Plants do not have great demands for gaseous exchange. The rate of respiration in plants is much lower than in animals. Large amounts of gases are exchanged only during photosynthesis, and leaves are well equipped for that. The distance travelled by gases in plants is not much and hence diffusion is enough to meet the need. Hence, plants do not have specialized organs for exchange of gases. Lenticels and stomata serve as the openings through which exchange of gases takes place in plants.


  1. The complete combustion of glucose yields energy during respiration. Most of the energy produced during respiration is given out as heat. CO2 and H2O are the end products of respiration.

  2. The energy produced during respiration is also used for synthesizing other molecules. To ensure the adequate supply of energy for synthesis of different molecules; plants catabolise the glucose molecule in such a way that not all the liberated energy goes out as heat. Glucose is oxidized in several small steps. Some steps are large enough to ensure that the released energy can be coupled with ATP synthesis.

Steps of Respiration:

  1. Respiration happens in two main steps in all living beings, viz. glycolysis and processing of pyruvate. Glycolysis involves breaking down glucose into pyruvate. This is common in all living beings. Further processing of pyruvate depends on the aerobic or anaerobic nature of an organism. In anaerobic respiration, pyruvate is further processed to produce either lactic acid or ethyl alcohol. There is incomplete oxidation of glucose in anaerobic respiration. In aerobic respiration, pyruvate is further processed to produce carbon dioxide and water; alongwith energy. There is complete oxidation of glucose in case of aerobic respiration.

  1. The scheme of glycolysis was given by Gustav Embden, Otto Meyerhof and J Parnas. Due to this, it is also called the EMP Pathway. Glycolysis takes place in the cytoplasm.

  2. Glucose undergoes partial oxidation in glycolysis; to form two molecules of pyruvic acid. Four molecules of pyruvic acid are formed after partial oxidation of one molecule of glucose during this process.

  3. First of all, glucose and fructose undergo phosphorylation to produce glucose-6-phosphate. The enzyme hexokinase facilitates this process. Two molecules of ATP are utilised during phosphorylation of one molecule of glucose. Two molecules of fructose-6-phosphate are formed at the end of this step.

  4. Fructose-6-phosphate is then converted into PGAL (Phosphoglyceraldehyde). Each molecule of PGAL then undergoes various steps to finally produce Pyruvic Acid. Four molecules of ATP are produced during this conversion. Since two molecules of ATP were utilised during phosphorylation of glucose, hence net production of ATP at the end of glycolysis is two for each molecule of glucose.

  5. Fate of Pyruvic Acid: Pyurvic acid further undergoes subsequent processes which are different for anaerobic and aerobic conditions.

  1. Endogenous electron acceptors are used for oxidation of organic compounds during fermentation. This is in contrast to aerobic respiration in which exogenous electron acceptors are used. Anaerobic does not necessarily mean absence of oxygen, rather it can also take place even in the presence of oxygen.

  2. Sugar is the most common substrate of fermentation. Ethanol, lactic acid and hydrogen are the common fermentation products. However, other compounds can also be produced by fermentation, e.g. butyric acid and acetone. Apart from taking place in yeast and many other anaerobes, fermentation also takes place in mammalian muscles. In our muscle cells, fermentation takes place during intense exercise; to meet out the excess demand of oxygen.


  1. Aerobic respiration takes place within the mitochondria. Following are the main steps in aerobic respiration:

  2. Stepwise removal of all the hydrogen atoms leads to complete oxidation of pyruvate. This leaves three molecules of CO2. This step takes place in the matrix of mitochondria.

  3. Electrons removed from hydrogen atoms are passed on to molecular O2. This happens with simultaneous synthesis of ATP. This step takes place in the inner membrane of mitochondria.

  4. Pyruvate enters the mitochondira matrix and undergoes oxidative decarboxylation. This involves a complex set of reactions which are catalysed by pyruvic dehydrogenase.

  5. During this process, two molecules of NADH are produced from the metabolism of two molecules of pyruvic acid (produced from one glucose molecule during glycolysis).

  6. After this, acetyl CoA enters a cyclic pathway. This pathway is called tricarboxylic acid cycle or Citric Acid Cycle or Krebs’ Cycle. This was first explained by Hans Krebs.

Kreb's Cycle

  1. The TCA cycle starts with the condensation of acetyl group with oxaloacetic acid (OAA) and water to yield citric acid. This reaction is catalysed by the enzyme citrate synthase and a molecule of CoA is released. Citrate is then isomerised to isocitrate.

  2. It is followed by two successive steps of decarboxylation. These steps of decarboxylation lead to the formation of α-ketoglutaric acid and then succinyl-CoA.

  3. After that, succinyl-CoA is oxidised to OAA allowing the cycle to continue. During this step, a molecule of GTP is synthesised. This is a substrate level phosphorylation.

  4. In a coupled reaction GTP is converted to GDP with the simultaneous synthesis of ATP from ADP. Moreover, there are three points in the cycle where NAD+ is reduced to NADH+H+ and one point where FAD+ is reduced to FADH2.

  5. The continued oxidation of acetic acid via the TCA cycle requires the continued replenishment of oxaloacetic acid. It also requires regeneration of NAD+ and FAD+ from NADH and FADH2respectively.

  6. Electron Transport System (ETS) and Oxidative Phosphorylation

  7. The next steps are to release and utilize the energy stored in NADH+H+ and FADH2. This is accomplished when they are oxidised through the electron transport system and the electrons are passed on to O2resulting in the formation of H2O.

  8. The metabolic pathway through which the electron passes from one carrier to another, is called the electron transport system (ETS). This pathway is present in the inner mitochondrial membrane.

  9. Electrons from NADH (produced in the mitochondria matrix) are oxidized by an NADH dehydrogenase (Complex I). After that, electrons are transferred to ubiquinone which is located within the inner membrane.

  10. Ubiquinone also receives reducing equivalents via FADH2 (Complex II). FADH2 is generated during oxidation of succinate in the citric acid cycle.

  11. The reduced ubiquinone (ubiquinol) is then oxidised with the transfer of electrons to cytochrome c via cytochrome bc1 complex (complex III). Cytochrome c is a small protein attached to the outer surface of the inner membrane and acts as a mobile carrier for transfer of electrons between complex III and IV.

  12. Complex IV refers to cytochrome c oxidase complex containing cytochromes a and a3, and two copper centres.

  13. When the electrons pass from one carrier to another via complex I to IV in the electron transport chain, they are coupled to ATP synthase (complex V). This coupling is necessary for the production of ATP from ADP and inorganic phosphate. The nature of the electron donor decides the number of ATP molecules synthesized.

  14. Oxidation of one molecule of NADH gives rise to 3 molecules of ATP, while oxidation of one molecule of FADH2 produces 2 molecules of ATP.

  15. Although the aerobic process of respiration takes place only in the presence of oxygen, the role of oxygen is limited to the terminal stage of the process. But since oxygen drives the whole process by removing hydrogen from the system, the presence of oxygen is vital.

  16. Yet, the presence of oxygen is vital, since it drives the whole process by removing hydrogen from the system. Oxygen acts as the final hydrogen acceptor.

  17. During photophosphorylation, light energy is utilised for the production of proton gradient. But in respiration, the energy of oxidation-reduction is utilised for the production of proton gradient. Hence, this process is called oxidative phosphorylation.

  18. The energy released during the electron transport system is utilised in synthesizing ATP with the help of ATP synthase (Complex V). This complex is composed of two major components, viz. F1 and F0. The F1 headpiece is a peripheral membrane protein complex. It contains the site for synthesis of ATP. F0 is an integral membrane protein complex which forms the channel through which protons cross the inner membrane. The passage of protons through the channel is accompanied by catalytic site of the F1 component for the production of ATP. For each ATP produced, 2H+passed through F0 down the electrochemical proton gradient.

The Respiratory Balance Sheet

  1. The respiratory balance sheet gives theoretical value about net gain of ATP for every glucose molecule oxidized. The calculations for respiratory balance sheet are based on some assumptions which are as follows:

  2. There is a sequential and orderly pathway in which one substrate makes the next substrate. Glycolysis, TCA cycle and ETS pathway follow one after another.

  3. NADH is synthesized in glycolysis and is transferred into the mitochondria. The NADH undergoes oxidative phosphorylation within the mitochondria.

  4. None of the intermediates in the pathway are utilised to synthesise any other compound.

  5. Glucose is the only substrate undergoing respiration. No other alternative substrates are entering in the pathway at any stage.

  6. But these assumptions may not be valid in a living system because all pathways work simultaneously. There can be a net gain of 36 ATP molecules during aerobic respiration of one molecule of glucose.

Amphibolic Pathway
  1. Glucose is the most favoured substrate for respiration. Other substrates can also be respired but they do not enter the respiratory pathway at the first step. Respiratory process involves both catabolism and anabolism; because breakdown and synthesis of substrates are involved. Hence, respiratory pathway is considered as an amphibolic pathway rather than a catabolic one.

Respiratory Quotient
  1. The ratio of the volume of CO2 evolved to the volume of O2 consumed during respiration is called the respiratory quotient (RQ) or respiratory ratio. The RQ for carbohydrates is 1. The RQ for fat and protein is less than 1.

  • LinkedIn
  • YouTube
  • Facebook
  • Twitter



Contact Us